COMP 555 - Problem Set 1

Joe Puccio

February 25, 2015

1.

We can see that there exist 4(6/2) = 43 = 64 different reverse palindromic recognition sites of length 6.
This is because, as we imagine constructing the palindromic sequence, we have four possible options for the
first entry, but any of these choices immediately fixes the last entry. This process continues for n/2 entries
where n is the total length of interest. We thus see that the problem is reduced to finding the possible
combinations of half the original string length. The fraction of 2N-mers, that are reverse palindromic is

4N

N = 4%,. We see this as the numerator (before simplification) is the number of possible reverse palin-

dromes in a 2N-mer, and the denominator (before simplification) is all possible strings for a 2N-mer.

The following code produces all such possible recognition sites:

import itertools

sizeOfPalindrome = 6

#essentially performs a "repeat”’—dimensional cartesian product
halfPermutations = itertools.product (’ATGC’ ,repeat=sizeOfPalindrome /2)

for permutation in halfPermutations:
print 7’

.join (permutation)+’’.join (reversed ([’A’ if b=="T"

else ’C’ if b=="G’ else T’ if b=="A" else 'G’ for b in permutation]))

The frequencies of the palindromic sequences in the dataset are:

{’ACTAGT’: 30370, 'TATATA’: 144759, "TCGCGA’: 1127,

'CGGCCG’: 7651, ’CITAAG’: 50087, "TGOGCA’: 7005, 'CCTAGG’:

'CTOGAG: 9957, 'GAGCTC’: 50049, 'ACATGT’: 79458,
'ATTAAT’: 106729, 'AGTACT’: 42704, 'AGATCT’: 60179,

'OGTACG’: 839, 'GGOGCC’: 19486, 'AGCGCI’: 8579, 'TGGCCA’:

"ATCGAT’: 6471, 'TGTACA’: 61405, 'TGATCA’: 56893,
'TTTAAA’: 252188, 'AAGCTT’: 64394, 'GCTAGC': 22197,
'CTATAG’: 39287, 'TCATGA’: 74262, 'AACGTT’: 11841,
"ATGCAT’: 66729, 'GCATGC’: 43792, 'TAGCTA’: 46642,

'OGOGOG™: 3460, ’CACGTIG’: 20824, 'COGCGG’: 5530, 'TCCGGA’:

'ATATAT’: 161388, 'GATATC’: 32152, 'CAATTG’: 40935,
'ACCGGT’: 4216, 'AAATTT’: 192451, 'CCCGCGG’: 31941,
'GGGOOC’: 40294, 'GTGCAC’: 38168, 'GTATAC’: 31467,
'TAATTA’: 101323, 'GGTACC’: 22705, 'GOGOGC’: 5048,



"GAATTC’: 60248, 'TTATAA’: 120196, 'GGATCC’: 30113, 'TTGCAA’: 68694,
'GTCGAC’: 2342, ’TCTAGA’: 61946, 'AGGCCT’: 67067, 'CCATGG’: 59851}

These frequencies were generated by the following code:

with open(sys.argv[1l], ’'r’) as sequenceFile:
fullSequence = sequenceFile.read ()
reversePalindroneFrequencies = {}

for reversePalindrone in reversePalindromes:
reversePalindroneFrequencies [reversePalindrone] =
fullSequence.count(reversePalindrone)

print reversePalindroneFrequencies

It appears as though the more frequently occurring sequences are those that are made of predominately
"T’s and ’A’s, while the less frequently occurring recognition sites are those that are made of predominately
'G’s and 'C’s.

3.

The following code produces a histogram which displays the distribution of lengths of the segments of
our sample when cut at recognition sites ”CGTAC/G”. That is, when the sequence of nucleotides CGTACG
are found, a cut is made between the last 'C’ and 'G’.

import matplotlib.pyplot

import re

cutStrands = re.sub(”(?<=CGTAC)(?7=G)”,” jaretrulz” , fullSequence).split (” jaretrulz”)
#super hacky because re.split sucks

matplotlib.pyplot.hist ([len(s) for s in cutStrands], bins=100, range=(0,3000000))
matplotlib . pyplot.show ()

500000 1000000 1500000 2000000 2500000 3000000

Figure 1: Distribution of DNA fragments by length



HapllLengths = [68, 114, 133, 162, 387, 557, 649, 813, 1737, 2012, 2325, 7342]
BstUILengths = [235, 316, 1403, 1455, 1562, 1589, 1633, 1666, 6440]
HapllAndBstUILengths = [9, 68, 99, 114, 133, 136, 162, 183, 387, 513,

557, 754, 813, 1032, 1455, 1562, 1633, 1666, 2012, 3011]

def powerSet(inputSet):
powerSet = [[]]
for element in inputSet:
powerSet.extend ([subset + [element] for subset in powerSet])
return powerSet

def determineOrderOfSegments (digestionSetA , digestionSetB, combinedDigestionSets ):
powerSetHits = []
for setToTry in powerSet(combinedDigestionSets):
if sum(setToTry) in digestionSetA + digestionSetB:
powerSetHits . extend ([setToTry])

solutionFound = False
remainingLengthsToExplain = [” init 7]

while not remainingLengthsToExplain:
remainingLengthsToExplain = digestionSetA + digestionSetB
usedPowerSetElements = []
for powerSetHit in powerSetHits:
for powerSetElement in powerSetHit:
if powerSetElement in usedPowerSetElements:
break
remainingLengthsToExplain .remove (sum(powerSetHit ))
usedPowerSetElements . extend (powerSetHit )
print sorted (usedPowerSetElements)

determineOrderOfSegments (HapllLengths , BstUILengths, HapllAndBstUILengths)

Collaborators: Alan Wu, Fred Landis.



